	•		. was an improve			' atomic m
_						
						[2]
). A	toms are either oxidi	sed or reduced to fo	orm ions.			
i.	Complete the sente	ences about how ato	oms form ions.			
	Atoms are		. to form positive i	ons. Atoms		elec
	to form positive ion	S.	•			
	Atoms are					
	•					
	Atoms areelectrons to form n	egative ions.	. to form negative			
ii.	Atoms areelectrons to form no	egative ions. formation about thre	. to form negative			
ii.	Atoms areelectrons to form n	egative ions. formation about thre	. to form negative			
ii.	Atoms areelectrons to form no	egative ions. formation about thre	. to form negative			
ii.	Atoms areelectrons to form not be table shows into Complete the table	egative ions. formation about three. Number of	to form negative ee different ions.	ions. Atoms		
ii.	Atoms areelectrons to form not be table shows into Complete the table lon	egative ions. formation about three. Number of protons	to form negative ee different ions.	Number of electrons	Mass number	

The element lithium exists as isotopes.

State one difference and one similarity between the Li⁺ ions formed from different isotopes of lithium.

Difference

Similarity

[2]

iv. A sample of magnesium metal is 5.2 cm wide.

Estimate how many Mg²⁺ ions would fit across the width of the sample of magnesium metal.

Use your knowledge of the typical radius of atoms in your calculation.

- 2. Seawater can contain isotopes of sulfur.
 - i. Draw three lines to connect each isotope with its correct description.

Isotope	Description
16	This isotope contains 17 neutrons.
S 32	This isotope has a full outer shell of electrons.
16 S	This isotope has more protons than neutrons.
33	This isotope has the highest mass number.
16 S 34	This isotope has the same number of neutrons and protons.

ii. Some of this sulfur in seawater is in the form of magnesium sulfate, MgSO₄.

What is the relative formula mass of a sample of magnesium sulfate, MgSO₄, where all of the sulfur atoms are the isotope sulfur-33?

Sulfur-33 is 16 **S** 33

Relative atomic mass (A_r): O = 16.0 Mg = 24.3

	Relative formula mass =	[2]
iii.	A scientist wants to separate magnesium sulfate from other compounds using thin layer chromatograph	ıy.
	The spot does not move from the start line on the chromatogram.	
	State what the scientist should change so that magnesium sulfate is separated from the other compounds.	
		<u>[1]</u>
iv.	Explain why magnesium sulfate has a high melting point.	
		[2]
3(a).	The model of the atom has developed over time.	
Descr nucle	ibe the experiment and results that Rutherford, Geiger, and Marsden used to determine that an atom harus.	s a
		_
		_
		[31

IDI. VIIIGII SIBICIIICIIIS BUQUI BIQIIIS BIC COLICC I	(b).	. Which	statements	about atoms	are	correct'
--	------	---------	------------	-------------	-----	----------

Tick (\checkmark) two boxes.

A proton has a positive charge and a relative mass of 1.

An atomic radius is approximately 1×10^{-12} m.

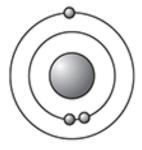
An electron has a negative charge and a relative mass of 1.

Most of the mass of the atom is in the nucleus.

The radius of an atom is much smaller than the radius of a nucleus.

[2]

4. A sample of propanoic acid, C₃H₆O₂, is made using an isotope of hydrogen, called deuterium.


The relative atomic mass of deuterium is 2.0.

What is the relative molecular mass, M_r , of propanoic acid when deuterium atoms replace all the hydrogen atoms?

- **A** 68.0
- **B** 74.0
- **C** 80.0
- **D** 86.0

Your answer [1]

5. The diagram of an atom shows that electrons occupy shells around the nucleus.

Which scientist proposed this atomic model?

- **A** Bohr
- **B** Dalton
- **C** J. J. Thomson
- **D** Mendeleev

Your answer [1]

6. The radius of a helium atom is 0.14 nm.

What is the radius of a helium atom in metres?

- **A** $0.14 \times 10^{-10} \text{ m}$
- **B** 1.4×10^{-10} m
- **C** 1.4×10^{-9} m
- **D** $14 \times 10^{-9} \text{ m}$

Your answer		[1]
-------------	--	-----

END OF QUESTION PAPER